
Zeros of Approximate Functional Approximations 

By Robert Spira 

1. Introduction. In this paper we discuss a calculation of zeros of 

N N 

(1) N(S) = 

Zn- 

+ 

x(s)ZLn- 
n=1 n=1 

where 

(2) l/x(s) = (2'r)-82(cos (irs/2))r(s). 

The gN(s) are of interest as approximations to the Riemann zeta function. Let 
s = or + it. In [1], it was shown that for t sufficiently large, gi(s) and g2(s) have 
their zeros on the critical line ar = 2. After encountering analytical difficulties in 
attempting to extend this theorem to further N, the calculations described below 
were undertaken. The results strongly suggest that for N > 3 one can expect to 
find infinitely many zeros off ar = 2 so that the theorem proved in [1] appears at 
its natural limit. For each N there is a region where gq(s) behaves similarly to t(s), 
and also a region where it behaves similarly to 2t(s). This empirical information 
should prove very useful for work along the lines of Rouch6's theorem, giving a 
condition for the Riemann hypothesis to be true in terms of the location of the 
zeros of gv(s). 

In Section 2, we give the theory of calculating the number of zeros of an analytic 
function within a closed curve when the information comes from a finite number of 
points on the curve. The theorem requires, for application in our case, an estimate 
for I 9N'(S) I, and this estimate is obtained. In Section 3, the method used for cal- 
culating X(s) is described, a difficulty being the calculation of r(s) for low values 
of t. Section 4 contains a discussion of the real function ZN(t) analogous to the Z(t) 
of the t-function. In Section, 5 the general organization of the calculations is de- 
scribed and Section 6 contains a discussion of the results. There are tables and 
figures of the zeros at the end. 

2. The Theory of Zero Calculation. We consider first the problem of how close 
the spacing of points along a curve C must be in order to conclude that one has 
counted correctly the number of zeros inside C by calculating the change of argu- 
ment at these points. 

Let f(z) be analytic inside and on a closed rectifiable Jordan curve C in a region 
R. The governing theorem is that if f(z) 54 0 on C, then the number of zeros within 
C is given by 

(3) N(f, C) d2zr Jcf(z) d r [c argf(z)]. 

By a set of sequential covering disks of C we mean a finite set of closed disks Ci, C2, 
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***, Cn, Cn+1 = C1 with centers cj lying on C whose union lies in R and contains C 
and such that the portion of C lying between c, and cj+l lies wholly within Cj. 

THEOREM 1. If 
(i) C1, ., Cn , Cn+1 = C1 is a set of sequential covering disks of C, all of radius h, 
(ii) M =l.u.b. f'(z), z in R, 
(iii) 4hM1 ? min f (cj)I 

then 
n 

(4) N(f, C) ? E [arg (f(cj+i)/f(cj))]. 
27r j=1 

Proof. We need only show f(z) # 0 on C and that the change of argument as we 
pass from cj to cj+l is ? 7r/4. Let z be on C and within the disk Cj, so z = cj + Z1, 
I Z1 I < h. Let f it + iv, zi = x1 + iyj . Then, applying Taylor's theorem, 

i ~cj) I - I f(z)) ? I f(cj + zI) - f(cj) 
< u(cj + zi) - u(cj) + I v(cj + ZI) -v(cj) 

x< xIux(t1) + Yl1(tl)I + I Xlvx(t2) + y1vy(t2)I 

'< [X I + I yj 1] [M + M] ? 2/2-hM, 

since I xi I + ? y V I _ 2 ?| V zi 2h. Hence If(z)l I I f(cj)I - 2V2hM 
> O as If(cj)l 4hM3, sof(z) # O on C. 

To complete the proof, note that by the above argument, all the images of the 
points on the curve between cj and cj+l will lie in a circle of radius 2V\2hM about 
f(cj). Since, by hypothesis, the center of this circle lies at a distance at least 4hMj 
from the origin, there can be no winding of the curve about the origin for z between 
cj and cj+l. The possible change in argument will be less if the circle with center 
f(cj) has a central distance to the origin greater than 4hMl, and by elementary 
analytical geometry, at the closest position the angles of images to the central ray 
is at most 7r/4. 

If one uses M\lcLeod's mean value theorem [2], hypothesis (iii) can be weakened 
to V\2hM < If(c) I . According to McLeod's theorem, we can write f(c; + Zi) 
- f(c3) = Xizif(tl) + X2ZIf(t2)) 0 _ Xi, X2; X1 -- '\2 = 1, andt , t2 lying between 
c; and cj + zi . The earlier estimate then reduces to hAl. 

To apply the theorem, one obtains an a priori estimate for Il, and works down 
to an h small enough to satisfy 4hM' _ I f(cj) . If f(z) 7 0 on C, such an h is 
easily seen to exist. Setting Uk + iVk = f(ck), the change of argument in (4) is 
easily seen to be arctan [(Vk'u+l - UkVk+l)/(VkVk+l + UkUk+l)]. In some cases, one 
may wish to locally compute the derivative and obtain only a consistent picture 
rather than a rigorous proof. 

In our particular case, we have 
N N N 

(5) gN,(s) I Z (log n)n'n ? x(s) Nlgn ' X() n~ ' )|Z nf+I~~ (log n)na' '+ Ix(s) E 
n=2 n=2 nil 

For convenience we take t ? 10, a > 2. With this limitation, we have, from Spira 
[1], Lemma 2, 

(6) | x(s) I < 1.04(l s 1/(27r) )12-a. 
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For an estimate of x'(s) l, we differentiate (2), obtaining 

(7) x'(s) x(s) [(r/2) tan (irs/2) + log 2r - F'(s)/j(s)]. 

From Spira, [3] equation (14), we have I tan (irs/2)I < (1 + e`t)/(1 -east) 

< 1.02 for t ? 10. From Schoenfeld [4], we have 

2 

(8) r'(s)/r(s) = log s - 1/(2s) - 17(12s2) + 6 f P3(x)/(s + x)4 dx, 

and estimating as done there, we have 

(9) iF'(s)/F(s)I ? i log s I + 1/(2 I s I) + 1/(12 I s 1 2) + 1/(10I t3). 

Putting together (6), (7) and (9), we obtain 

x'(s)I < 1.04(1 s I/(21r))1I2-a 
(10) 

*[.51r + log27r + log s + 1/(21s1) + 1/(121812) + 1/(10 
t 3)] 

so that an estimate can- be made for I gN'(s) I from (5), (6) and (10). Table I 

gives these estimates for N = 2, 10, 100, t -- 10, t 100, 2 < a < 1 and 1 < a < 2. 

3. The X-Function. The X-function satisfies 

(11) X(s)X(1 - s) = 1 

so that X~s) can be obtained by calculating 1/x(1 -s). For the r-function, we 
use the Stirling formula (de Bruijn [5]): 

(12) F(s) -\/(27r)e8`sl/2 [ 1 + E ak sl 

where the ak are constants. Near the negative real axis, the error term for (12) 
becomes large, so that (12) cannot be used for both t and a- small. By repeatedly 
using the functional equation r(s + 1) = sf(s), one obtains 

1/X(s + 8) = (2ir)-82(cos (irs/2))P(s + 8) 

(13) _ /s + 7s (s8 7? 6 s + 7s + 10 (s2 + 7s + 12\ 1 

4,Y2 / 4,2 / \ 4r2 47r2 /x(s) 

so that x(s) can be obtained from x(s + 8) for t and a- small. We set S = the 

TABLE I 

Estimates for I gNI (S) I 

t 120 t 1?00 

< a < 1 1 ' a < 2 < a _ 1 1 _ ff 2' 

lx(s)I 1. .84 1. .27 
Ix'(s)I 5.91 5.04 8.08 2.19 

9q2'(S) 13.01 16.64 17.35 7.30 
gI o(s)80.42 365.67 102.12 150.72 

Igloo (s). 1011.00 42903.64 2036.00 16685.40 
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factor in brackets in (12), and separate the remaining factors of 1/x(s) into real 
and imaginary parts: 

(14) l/x(s) = [+7rtl2 cos (0 - lro/2) + ev-rt/2 cos (0 + 7ro/2) 

+ i(ey+7rt/2 sin (0 - 7ro/2) + ey-rt/2 sin (0 + wr/2) )]S 

where 

(15) y = (o- l)log( s /(2-x)) - -targs, 

0 = tlog( s 7/(2w)) -t + (o(- 1) args. 

For computation, we rearrange eY+7tI2. Since 

t(7r/2 -args) = tarctan(cr/t) 

= 0(1 - 2/(3t2) + 0r4/(5t4) - cr6/(7t6) + * ) 

we have 

(16) e ~t12 exp {(o-l) log( s /(2ir))- o[o-2/(3t2) -_ 4/(5t4) ? * . 

For t very large, it helps accuracy if the quantities 0 ? iror/2 are computed and re- 
duced mod 2wx in double precision before computing their single precision sines and 
cosines. 

For the S factor, we write 
m m 

S = 1 + Ck- i Sk, 
k=l k=l 

and use the recursion formulas 

Ck+l = (ak+l/ak)[C*Ck - SSk] I S 1, 

Sk+l = (ak+l/ak) [C*Sk + S*Ck]/l S I 

where C* = cos (arg s) and S* = sin (arg s). The constants ak+1/ak may be found 
in Spira [6]. Table II gives check values for x(s) for o-: .5, 1; t: 0, 1, 10, 100. 

4. ZN(t), Z(t). From (1) and (11), it follows that 

(18) gN(S) = X(S)gN(1 - s), 

so, on r = 2, if gN(s) 5? 0, we have 

(19) 9N( 2 + it)/gN( 21 it) = x( 2 + it). 

TABLE II 
Check values of x(s) 

-~~~~~~~'0 
o= .5 o= 1 

t 
Re x(s) Im x(s) Re x(s) Im x(s) 

0.0 1.0 0.0 00 

1.0 - .92357 14911 - .38342 62651 -.22053 91646 - .14096 10581 
10.0 .98891 46004 - .14848 53968 .78528 89724 -.10788 77223 

100.0 .99988 53642 - .01514 12839 .25063 86409 -.00348 20602 
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100 ~~~~~~~~~~~~~~~~~43 3 
4 4 3 3 3 

14 3 

01111110 14 
4 3 3 3 3 
43 

3 3 3 3 
14 3 

4 3 3 3 3 
9o 4~ 4 3 

0 10 1 1 0 3 3 3 
1 00 3 2 2 

4~ 3 3 3 2 
14 3 2 

4 4 3 3 3 2 
0 2 

4 33 '3 2 
14 3 3 3 2 

8o 1~~~ ~ ~~~ ~~~~~414 3 3 2 80- ~~~~~~~~~~~~~3 3 3 2 2 
3 3 2 2 

14 3 2 2 2 2 
0 01 1 10 4 3 2 2 

4 3 2 2 
3 3 3 2 2 

3 .3 3 2 2 2 
4 2 2 2 

14 4 3 3 3 3 2 2 
70 ~~~~~~~~~~~~~~3 2 2 .2 70- ~~~~~~~~~~~~3 3 2 2 2 2 

3 2 2 2 2 
4 3 3 2 2. 

4 4 2 2 2 
0 3 3 2 2 2 2 

3 2 .2 2 2 
4 3 3 3 2 2 22 

4~ 4 2 2 2 22 
3 2 2 2 2 

0 1 11 3 2 2 2 2 2 
60- 1 3 3 2 2 2 

2 2 2 2 2 2 
144 3 3 2 2 2 2 

3 2 2 2 2 2 2 
3 2 2 2 2 2 2 

3 3 3 2 2 2 2 2 
14 4 ~ 2 2 2 2 2 2 

3 3 2 2 2 2. 2 2 
2 2 *2 ~ 2 2 2 

3 3 2 2 2 1 
5 0 10 3 2 2 2 1 

o 14 4 3, 2 2 2 2 1 
2 2 2 2 2 1 1 

3 3 2 2 2 2 22 1 1 
3 2 2 22 2 2 2 2 

14 3 2 2 2 2 2 2 2 1 
4 ~~~~2 2 2 2 1 11 1 

3 22 2 1 
0 3 2 2 2 21 11 .2 2 2 1 1 1 

40- ~~~~4 3 2 2 2 1 1 111 
3 2 2 2 22 11 1 

3 2 2 22 1 1 1 11 ~ 2 22 2 22 1 11 
3 2 2 2 ~~~2 1 11 11 

14 3 2 2 2 2 221 1 ~ 1 
3 2 2 2 1~ 11 2 1 1 1 1 1 

1 ~ 3 2 2 2 1 1 11 111 
30- 4~ 3 2 .1 ~ 1 111 

2 2 2 1 1 11 11 1 
3 2 2 2 2 1.1 11 11 

3 2 2 2 1 1 1 1 111 
14 2 1 11 1 

3 2 1 1 1 1 1 110 11 0 
20 14 2 1 1 1 11111 

22 22 11 1 111 1111111111 

2 
1 

1 1 11111111 32 
21 1 1 111 110 11111100 3 1 
2 

1 10 00001 2 1 111111 000011 000000 
0 

2 11 1111 0000000 000 
2 1 1. 111111 0000 00 0000 

10- 
~ ~ ~ 111111 11 1100 00 0 

2 1 1 11111 1 1000000000000000 0 2 11 
1 1 110000 0 0 0OOOOOO 0 0o 

0 0 

lo ~~~20 30 4~0 

Fig.1. Zrosof gN(s) 
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Define 

(20) 9= (t) = -(argx( + it))/2, 
so 

(21) X(2 + it) = e -2i0 

Now define 

(22) ZN(t) = e 9N( 2 + it) 

If 9N(2 + it) $ 0, then, from (19), arggN( +? it) -6(mod27r), so ZN(t) is 
real for such t, and since it clearly vanishes exactly at the zeros of 9N(2 + it), it 
is always real. It is a priori possible that ZN(t) be of one sign on both sides of one 
of its zeros. If it changes sign over an interval, then there is a zero within the in- 
terval. 

As in the case of Z(t) for the c-function (Titchmarsh [7], p. 79), we find 

(23 ) ZN(t) = 2 E 112I- ogn (23) 
~~~~~~n=1 n 

and 

(24) a = Im log r + it/2) - (t logir)/2 

which is easily computed for t > 10 using the asymptotic series for log r. For t < 10 
one can use formula (20), which will operate by the method of the previous section 

200 

0 and 1 

3 

2 

t 

100 

Fig. 2. Regions of zeros of gN(s) with given real part 
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Empirically, on a- = 1, x(s) starts at 1 for t = 0, and as t increases, x(s) first 
winds counterclockwise approximately 11y revolutions, passing -1 near t = .8 and 
1 near t = 3.5 and peaking out around t = 2ir, then reversing and winding ever 
faster clockwise as t goes to infinity. 

5. The Programs. Two programs were written. The first straightforwardly cal- 
culated the number of zeros within -a rectangle, and printed out this number along 
with the minimum of the functional values calculated and the maximum change of 
argument between successive points on the path. 

The second program was for use in the critical strip. It calculated A arg gN(s) 
around a rectangle centered on - = 12 by calculating 2A arg qg(s) - A arg x(s) 
around the right half of the rectangle. That this is correct follows from equation 
(18). The values of gN(s) and x(s) were saved, so that the values for gv+i(s) were 
easily calculated. Provision was made for expanding the rectangle and refining the 
step size in case unsatisfactory minima of 1gN(s)l or unsatisfactory maxima of 
change of argument were obtained. 

After the number of zeros within the- rectangle was satisfactorily ascertained, a 
comparison was attempted with sign changes of ZN(t). The interval along the critical 
line could be subdivided several times to attempt to force agreement. 

As the computation developed, it became clear that there were many zeros off 
the critical line, so that the strict requirements of Theorem 1 did not have to be 
applied. Thus, the limits for satisfaction were simply set small, but well above the 

TABLE III 

Selected zeros of gN(s) 

AT | Real Imaginary N Real Imaginary 

2 1.473596 4.259284 7 1.486354 60.035564 
3 .680126 3.437405 7 1.214030 76.770971 
3 2.561720 8.020892 7 1.163081 88.014369 
3 1.403170 31.800344 7 .855429 95.162091 
3 .833385 48.882105 8 1.057658 60.105830 
4 1.736309 6.698773 8 1.224559 76.504505 
4 2.989619 11.976970 8 1.056399 87.836911 
4 .586301 41.877039 8 1.287352 95.262405 
4 .679439 49.068871 9 1.405330 76.751423 
4 .855779 60.034343 9 .739636 87.964248 
4 .820997 66.058877 9 1.478086 95.116721 
4 .549963 88.150047 10 .826287 76.834502 
5 1.516003 49.031816 10 .982439 87.798674 
5 1.424444 60.013084 10 1.161492- 95.165571 
5 .750056 76.458282 11 1.191464 88.012637 
5 .893923 83.732473 11 1.423208 95.022729 
5 1.088392 88.219634 12 .880716 88.106968 
6 .895590 49.203126 12 1.498076 95.291697 
6 1.200929 59.767704 13 l.195442 95.358673 
6 .721840 76.643891 14 .863556 95.266764 
6 .921079 88.111376 
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roundoff noise, say .05, and the objective of the calculation was changed to obtaining 
a reasonably accurate picture of the true situation, with not too great an expenditure 
of computing time. 

There was considerable cross checking between the programs. For instance, 
along the critical line, the program for gN(S) was checked against the independent 
programs for ZN(t) and 6(t). When roots of a = 2 were found, computing the 
corresponding roots with real part 1 - o- gave another overall check. 

6. The Zeros. Approximate locations of zeros of qN(s) were calculated for 
N: 2(1)100 in the region 2 < a- < 5, 1 < t ? 200. Fig. 1 gives the results for 
t < 100, N ? 50. In this figure, the integer 0 signifies a zero with real part strictly 
between 2 and 1, and the integer k ? 1 signifies a zero with real part > k 
and < k + 1. The column of the integer signifying a zero indicates to which N it 
belongs, and if the integer is between t and t + 1, it indicates a zero with imaginary 
part ? t and < t + 1. This t is usually meant to be an integer, but in some cases 
of uncertainty it was chosen a half integer. 

As can be seen, the majority of the zeros lie in descending chains of decreasing 
real part. In the portions of the chains where there is a change of the integer from 
k to k - 1, if there was uncertainty about whether k or k - 1 was to be chosen, 
the larger was taken in almost all cases. 

Fig. 2 shows the boundaries of the regions where zeros having given real parts 
occur, the integers occurring there having the same significance as in Fig. 1. The 
zeros within the critical strip appear to lie outside the t range /(27rN) < t ? 27rN 
for each N. There is also a second, less obvious, t range free of zeros, corresponding 
to where the Riemann-Siegel formula is used, N < (t/2ir)112 < N + 1. In this 
second region, 9N(s) approximates t(s), while in the first region, 9N(S) is approxi- 
mately 2r(s) since EN= n-8 is approximately c(s) for (27rN)1/2 < t ? 27rN, 
(Spira [8]), and by the functional equation, the other sum of N( s) is also approxi- 
mately c(s). 

Table III gives the zeros for N < 4, t < 100, and also the zeros in the region to 
the left of the line t = 27rN. 

The computations were done on an IBM 7040 at the University of Tennessee 
Computing Center, which was aided by grants NSF-G13581 and NSF-GP4046. 
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